Applicability of Trenchless Technologies for Different Conditions

Dr. Mohammad Najafi, P.E., F. ASCE

Professor and Director

Center for Underground Infrastructure Research & Education (CUIRE)

Director of Construction Engineering & Management

Department of Civil Engineering

The University of Texas at Arlington

Sharif University of Technology

Wednesday, May 18, 2016

DEPARTMENT OF

Agenda

- Introduction
- Underground Infrastructure
- Benefits & Limitations of Trenchless Technologies
- Where Trenchless Technologies are Applicable
- Trenchless Construction Methods
- Trenchless Renewal Methods
- Summary and Conclusions

Center for Underground Infrastructure Research & Education

Grouping of university, municipal, industrial, business and governmental representatives committed to the advancement of knowledge in materials, methods and equipment used in underground infrastructure.

CUIRE Facilities and Equipment

- Testing Machines
- Environmental Rooms
- Meeting Rooms
- Overhead Cranes
- Data Loggers and Data Acquisition Systems
- Hydrostatic Pressure Testing
- Pressure Gauges, Extensometers, etc.
- Geotechnical Testing
- Soil Resistivity Equipment
- Load Pit
- Finite Element Software (ANSYS, ABAQUS, PLAXIS)

Publications

Pipe Bursting Projects

ASCE Neevols and Reports on Engineering Practice No. 112

NEW PIPELINE
TECHNOLOGIES,
SECURITY,
AND SAFETY

EDITED BY
MOHAMMAD NAJARI
ASCE

ASCE

Journal of Pipeline Systems (JPS) Engineering and Practice

- New pipeline technologies,
- Planning, engineering, design, construction (conventional and trenchless),
- Renewal, safety, operation and maintenance,
- Asset management,
- Environmental aspects, and
- Sustainability of pipeline systems.

http://www.editorialmanager.com/jrnpseng/

February 2010 + Volume 1, Number 1 ISSN 1949-1190 + CODEN: JPSEA2

Journal of
Pipeline Systems
Engineering
and Practice

Editor's Note Mahammad Najafi

Technical Paper

- Compression Performance of Steel Pipelines with Welded Stip Joints A. Mason, Thomas D. O'Rourke, Scott Junes, and Ker Tuber.
- 11 Long-Runge Facility Planning Based on Dynamic Programming for Optimum Combined Cost and Probability Parts K. K. Bahas, W. J. Tehn, J. F. Hendenson, and B. Chmilar
- 19 Seisnic Doinage Estination for Buried Pipelines: Challenges after Three Decades of Progress Omar Psiedo-Parras and Mohammad Najofi
- 25 Recommendations for Design of Reinforced Concrete Pipe Ece Enlogmus, Brian N. Skourop, and Maher Todras
- Reliability Analysis of Buried Flexible Pipe Soil Systems
 J. Sivakumus Babu und Anit Srivastava
- 42 Ronking of the Factors Affecting Productivity of Microtuneeling Projects Moleumed Y. Hegab and Ossama M. Salem
- 53 Hierarchical Fuzzy Expert System for Risk of Failure of Water Mains. Mosson Fares and Sirek Zoved

Technical Notes

 Ring-Hernforced Pipelines: That Mainert of Mystery W. David Carrier III

Center for Underground Infrastructure Research & Education

- CUIRE can be a resource for you:
 - Pipe/soil interactions
 - Physical testing & computer modeling
 - Review of design alternatives
 - Life-cycle cost analysis
 - Constructability
 - Trenchless technology
 - Education, training and certification courses

Civil Engineering Department

- ☐ Total Number of Faculty: 24
- □ Total Number of Adjunct Faculty: 17
- Current Faculty Hires
 - Construction Engineering and Management
 - □ Structural Engineering
 - Water Resources Engineering

Civil Engineering Department

- ☐ Total Number of Students: 939
 - ☐ 425— Undergraduate
 - 410 MS/ME/MCM
 - □ 104 Ph.D.

Ph.D. Students Enrollment

Total 104

Civil Engineering Department

- □ The only comprehensive Civil Engineering program in North Texas
 - Bachelor of Science in Civil Engineering
 - Bachelor of Science in Architectural Engineering
 - Bachelor of Science in Construction Management
 - Master of Science in Civil Engineering
 - Master of Engineering in Civil Engineering
 - Master of Construction Management
 - Doctor of Philosophy in Civil Engineering

Fully Equipped CE Laboratory Facilities

Among the Best in the Nation

- Nedderman Hall Laboratories
 - Environmental Engineering
 - Geotechnical Engineering
 - Hydraulic Engineering
- Civil Engineering Laboratory Building (CELB)
 - Construction Engineering
 - Environmental Engineering
 - Geotechnical Engineering
 - Structural Engineering

Civil Engineering Laboratory Building

Established 2008

Construction Cost: \$9.8 million

College of Engineering Total

Notes

- 1) CE research funding has been among the top 2 in the College of Engineering for the past two years.
- 2) Funding sources: Federal, State, and Private

2014-2015 Research Expenditures

☐ Civil Engineering Average:

\$350,000 per faculty member

☐ College of Engineering Average:

\$221,000 per faculty member

CUIRE Research

- Integrating Underground Freight Transportation into Existing Intermodal System
 - Agency: Texas Department of Transportation
 - Amount and Duration: \$247,049 12 Months
- 2. Innovation and Research for Water Infrastructure for the 21st
 - Century: Structural Capabilities of No-Dig Manhole Rehabilitation
 - Agency: Water Environment Research Foundation (WERF)
 - Amount and Duration: \$251,000 19 Months
- 3. 24 in. and Larger Water Pipelines Failures
 - Agency: Hanson Pipe & Precast
 - Amount and Duration: \$20,000 18 Months
- 4. Research and Testing on Large Diameter Water Transmission
 - Pipeline Installation: Integrated Pipeline Project (IPL)
 - Agency: Tarrant Regional Water District
 - Amount and Duration: \$461,941 27 Months
- 5. Research and Validation of Culvert Standard SCP-MD and Jack and Bore Issues
 - Agency: Texas Department of Transportation
 - Amount and Duration: \$148,595 18 Months
- 6. Long-term Testing of SIPP Polyuria Formulation For Water Pipe
 - Renewals
 - Agency: 3M Water Infrastructure
 - Amount and Duration: \$143,926 38 Months

TEXAS
ARLINGTON

Trenchless Technology Methods

Trenchless Technology:

All methods of pipeline and utility installation and renewal with minimum disruption of surface and subsurface

ARLINGTON

Benefits of Trenchless Technology

Do not assume open-cut is less expensive than trenchless technology!

Benefits of Trenchless Technology

Comparison of Cost Factors Between Open-Cut & Trenchless Technology

	Open-Cut	Trenchless Technology
Depth	Major	Minor
Diameter	Moderate	Moderate
Soil Conditions	Major	Moderate to Minor
Obstructions	Major	Minor
Water Table	Major	Minor
Existing Utilities	Major	Major to Moderate
Damage To Pavement	Major	Minor
Reinstatement	Major	Minor
Traffic	Major	Minor
Safety Issues	Major	Minor
Productivity	Major	Minor
Environmental Issues	Major	Minor

General Considerations

Infrastructure Type

Water Pipelines

Sewer Pipelines

Gas and Fuel Lines

Electrical Cable and Fiber-optic lines

Chemical or industrial pipes

DEPARTMENT OF

Pipe Geometry

Straight

Pipes with bends

Circular pipes

Non-circular pipes

Pipelines with varying cross-section

> Pipelines with deformations

Problem Type

New pipe installation

Pipeline renewal

Local repairs

Manhole renewal

Lateral renewal

Hydraulic problems

Corrosion problems

Should You Go Trenchless?

- ❖ Is the pipe 2 m deep or more?
- Is the pipe below water table?
- Is soil unstable?
- Is underground congested with other utilities?
- ❖ Is it in urban area?
- Are drive lengths more than 100 m?
- Is it under a roadway?
- Can the pipe be renewed or spot repaired?
- ❖ Is it in residential area?

If yes to 2 of above questions, consider trenchless technology!

Main Challenges for Trenchless Technology Projects

- Locating Existing Underground Utilities
- Lack of Standard Guidelines & Specifications
- Lack of Proper Geotechnical Investigations
- Matching the Correct Method to the Project Conditions
- Specification Interpretation
- Lack of Inspector & Operator Experience and Proper Training

Gas Explosion

DEPARTMENT OF

CIVIL ENGINEERING

Old Trenchless Guidelines

DEPARTMENT OF

Trenchless Technology Methods

Introduction

- □ Successful TCM project requires <u>surface</u> & <u>subsurface</u> investigations to mitigate risks.
- □ During design phase, surface & subsurface survey information assist in determining suitable trenchless method.
- □ Accurate data will reduce possibility of installation problems
 & change orders.
- ☐ Accurate data will also minimize litigation and dispute

Surface Survey

- ☐ Surface survey is required for design phase.
- □ Each project has a specific site requirements.
- □ A surface survey should be conducted along the centerline of proposed bore path.

Surface Survey

- ☐ Design surface survey include:
 - Work area requirements
 - Existing grade elevation data
 - Surface features
 - □ Boring or test pit locations
 - Waterways & wetlands
 - ☐ Manholes, valve boxes, etc... as well as structures adjacent to path.

Subsurface Survey

- □ Subsurface investigation is the next step to surface survey.
- ☐ Subsurface considerations that impact design and therefore need proper investigations.
- ☐ Subsurface investigations include:
 - ☐ Presence of existing utilities
 - Manmade obstructions
 - Method of placement
 - Geotechnical Conditions

Subsurface Survey

☐ Existing Utilities

- □ Local "one-call" service or municipalities and utility companies should be contacted.
- ☐ Methods of confirming subsurface utility locations include SUE, surface applied pipe locators, geophysical methods (ground penetrating radar (GPR), seismic method, etc.), vacuum excavation equipment, and test pits.
- □ Location & elevation of existing utilities is especially critical in working pit locations.

Subsurface Survey Include □Geotechnical Investigations

- - □ Determination of soil conditions.
 - □ Investigation for complex installation is carried out in two phases:
 - ☐ General Geotechnical Review
 - ☐ Geotechnical Survey.

Subsurface Survey (Contd.)

□General Geotechnical Review Includes:

- □ Review & examining existing geotechnical data.
- □ Data available from construction project records in the location (buildings, piers, bridges).

ARLINGTON

Subsurface Survey (Contd.)

- ☐ Geotechnical Survey Include:
 - ☐ Determining the nature of soil at the site and its stratification.
 - ☐ Obtaining disturbed and undisturbed soil samples for visual identification and lab tests.
 - ☐ Determining the depth and nature of bedrock.
 - ☐ Perform in-situ field tests.

Geotechnical Survey (Contd.)

- □ Observing surface drainage conditions from and into the site.
- Assessing any special construction problems with respect to the existing structures nearby.
- □ Determining groundwater levels, sources of recharge, and drainage conditions.

Alignment Considerations

- ☐ Feasible trenchless technology alignments involve:
 - Evaluating available right-of-way
 - Easement acquisition issues
 - Determining the location of existing utilities
- ☐ Straight horizontal alignment are generally preferred for TT projects.
- □ A prospective alignment must have a adequate jacking and receiving pit.

Alignment Considerations (Contd.)

- □ Pipelines constructed using trenchless technology methods can be located deeper, sometimes with only a small increase in construction cost.
- Deeper alignment can avoid existing underground utilities, potential conflicts, and utility relocations.
- □ Straight horizontal alignments are generally preferred because:
 - ☐ Provide for more accurate control of line-and-grade.
 - ☐ More uniform stress distribution on the pipe and joints reducing the

risk of eccentric loads.

☐ Jacking and receiving pits are vertical excavation with shoring

and bracing systems.

- ☐ Shoring system commonly used:
 - ☐ Sheet-pile systems
 - Internal bracing
 - □ Soldier pile
 - ☐ Circular steel rib systems
 - ☐ Timber lagging & internal bracing
 - ☐ Liner plate system with steel rib supports

- □ An important factor in design of pits is groundwater control.
- □ Dewatering systems using deep wells or well points are frequently used.
- □ Prospective alignment must have ac receiving pit locations available.

UNIVERSITY OF

ARLINGTON

- Construction access to the jacking pit must be provided for transporting tunnel muck, pipe sections, and tunneling equipment.
- □ Traffic control requirements must be evaluated in selecting and laying out jacking pit sites.

- ☐ A typical jacking pit site needs
 - enough space for:
 - ☐ The jacking pit itself
 - □ Slurry tanks
 - □ Crane
 - □ Pipe storage
 - ☐ Support facilities (e.g., a generator,

power pack, and bentonite

DEPARTMENT OF

CIVIL ENGINEERING

lubrication unit).

Maximum Distance of Installation

- Maximum distance a pipe can be installed depends on:
 - Pipe size
 - ☐ Structural capacity of the pipe
 - ☐ Thrust capacity of the thrust block and the main jacks
 - Soil conditions
 - ☐ Effectiveness of the bentonite lubrication system
 - ☐ Specific project conditions such as operators skills

Calculating Jacking Force

JF = Total jacking (thrusting) force, (lb),

FP = Resistance of the MTBM (penetration resistance), (lb),

FR = Frictional resistance (loads acting in the direction of pipe axis) (lb).

R = Circumferential frictional resistance (skin friction), (lb/in.2)

S = Perimeter of pipe cross section = (Outside diameter of pipe) $\times \pi$, (in.)

L = Jacking (thrusting) distance, (in.)

$$JF = FP + \sum FR$$

$$FR = R \times S \times L$$

Resistance of the Leading Pipe

□ For slurry shield microtunneling equipment, the value of the resistance of the leading pipe (FP) is calculated by:

$$FP = (P_e + P_w) \times (\frac{B_c}{2})^2 \times \pi$$

- □ Pe = Contact (point) pressure of the cutting head, (psi),
- □ Pw = Slurry pressure (psi), and
- □ Be = Outside diameter of the shield (boring) machine, (in.).

Rankine's Passive Soil Pressure

Theory
The allowable thrusting force (Q) of the thrust block is calculated by Rankin's passive soil pressure theory

DEPARTMENT OF

CIVIL ENGINEERING

Design

- Permanent works design
 - Routing Considerations
 - Materials
 - Ground Movement
- Temporary works design
 - Face Stability
 - Method and equipment selection
 - Jacking loads & their management
- Shafts

Routing Considerations

Do not design as you would for open-cut

Depth considerations

Pipes – Other Considerations

- Section Lengths
- Joints
- Injection Ports
- Special Pipes
 - Interjack Stations

DEPARTMENT OF

CIVIL ENGINEERING

- Lead pipes
- Coatings / Linings

Pipe and Alignment

Pipes must withstand alignment error

DEPARTMENT OF

CIVIL ENGINEERING

Preparation for Contract

- The Contract
- Construction Drawings
- Specifications and Standards
- Measured Work
- Prime Contractor / Subcontractor Issues
- Prequalification

Types of Contract

- Who should carry the Risk?
 - Traditional Design/Bid/Build
 - Fixed Price
 - Mixed Price
 - Incentives
 - Target Price
 - Design & Build Contracts
 - Shared Risk Contracts
 - Partnering

Timing

- Seasons
- Environmental
- Community
- Contractor or equipment availability

DEPARTMENT OF

CIVIL ENGINEERING

Specifications and Standards

- Technical Specifications
 - Prescriptive or Performance
- Submittals
 - Strong submittals force project planning and management
- Standards

Measured Work

- Consider Payment Items carefully
 - Pipe
 - Installation by...
 - Shafts
 - Manholes or shaft conversions
 - Incidentals e.g. grouting, ground monitoring
 - Contingency issues

Construction

- Submittals
- Inspection and Monitoring
- Records
- Training
- Safety
- Risk Management & Problem Solving
- Contractual issues

The Role and Importance of Inspection

- The eyes of the Owner and the public
- Development of a working relationship
- Safety
- Records and reports
- Comprehension of risks
- Decision Making

Contract Administration

- Plans and specifications
 - Contractual requirements
 - Technical requirements
- Monitoring
 - Shafts
 - Tunnels
 - Elsewhere
 - Safety
 - Delays

- Records
 - Photographic
 - Written
 - Daily Records
 - Specific Reports
 - Samples
- Surveying
 - Position
 - Alignment
 - Settlement

Monitoring - Shafts

- Barriers
- Access
- Ground conditions & water
- Adherence to specs & method statement
- Over excavation water issues
- Shoring integrity
- Build quality permanent works considerations
- Settlement

Monitoring

- Ground conditions
- Over excavation
- Installation
 - Operators station data (cover separately)
 - Slurry management
 - Pipe Joint integrity
 - Lubrication
- Surface settlement

Monitoring

- Damage away from the working areas
- Noise
- Dust
- Traffic management & barriers
- Public reaction to work/Public relations

Records

- Photographs
 - Surface features and close structures
 - Progress
 - Changing conditions
 - Potential claim or unusual items
- Samples
 - Representative material

- Written
 - Daily activity record
 - Start & finish times of shifts & work elements
 - · Data and face logs
 - Alignment control data
 - Grouting records
 - Settlement monitoring
 - Labour & plant utilization
 - Material deliveries & deficiencies

Surveying

- Position
 - Shaft locations (Top & Bottom)
- Alignment
 - Horizontal and vertical alignment
 - Alignment control of tunnel
 - Ring build controls
 - Curves
 - Slope of drive
- Settlement
 - Monitoring requirements

What Can Go Wrong?!

- Risk analysis & Management
 - Collapse
 - Settlement
 - Damage
- Factors affecting cost
 - Delay
 - Change in conditions

- Overcoming the problem
 - Claims mitigation
 - Technical alternatives
- Contractor Claims
 - Basis under contract
 - Events leading up to claim
 - Overall contract picture

Factors Affecting Cost

- Variance in conditions
 - Face becomes unworkable
 - Major obstructions
- Delay
 - Slow progress resulting in extended contract period
 - Specific stoppages

SUBSURFACE UTLITY ENGINEERING (SUE)

DEPARTMENT OF

CIVIL ENGINEERING

Gredibility of SUE SUE VS. Conventional

Actual Location 7.0 feet East

One-Call Mark on 2" PVC Gas

Nevada DOT Carson Freeway SUE Project

Source: Cardio TBE

What is SUE?

Accurate Utility Information

Designation

The process of using a surface geophysical method or methods to interpret the presence of a subsurface utility and to mark its approximate horizontal position (its *designation*) on the ground surface. (Note: Utility owners and contractors sometimes call this process "locating".) (ASCE Standard 38-02)

Locating

The process of exposing and recording the precise vertical and horizontal location of a utility.

Data Management

Surveying utility information obtained by designating and locating and entering it into the computer-aided design (CAD) system.

ARLINGTON

SUE Applications

Questions:

- Potential project impact on utilities?
- How reliable are utility records?
- If utilities are not shown correctly, what impact will there be?
- Additional unidentified facilities?
- Is this project critical/in public spotlight?
- Are there safety risks?
- What if?

Quality Level "D"

- Utility Contact Phase
- Records Review

Quality Level C Special Features

Quality Level "B"

Determining Horizontal Alignment

Quality Level "A"

Utility Locating

- Utility Exposed
- Accurate X,Y, Z Locating
- Size, Material and Cross Section

ARLINGTON

Conflict Analysis

Build Conflict Matrix

Identify Locations

Identify Actual Conflicts

Analyze SUE Data Update Conflict Matrix

Conflict Resolution

- Modify Project Owner's Design
- Introduce Design Alternatives
- Identify Utility Relocations
- Utility Coordination

ARLINGTON

Relative Cost Savings and Benefits

Purdue Study

ARLINGTON

- Commissioned by FHWA
- 71 Projects Studied
- Cost Savings of \$4.62 per \$1.00 spent
- Un-quantifiable Savings Not Included
- Only 3 Projects had Negative Return

Relative Cost Savings and Benefits

- About 10% of Design Budget
- About 1% of Design/Construction Budget
- SUE Costs Higher for Urban than Rural Projects

Further Reading & Information

- Periodicals Trenchless Technology Mag, No-Dig Intn'l, World Tunnelling, Underground Construction
- Books/Manuals
 - Trenchless Technology Book by Dr. Najafi
 - Pipe Jacking and Microtunneling J Thomson Blackie ISBN 07514 0102 1
 - Guide to best practice for the installation of Pipe Jacks and Microtunnels - PJA - ISBN 0 9525982 05
 - ASCE Standard Construction Guidelines for Microtunneling
- ASCE Pipeline Conference Papers
- Corporate Literature (inc web sites)
- NASTT

Trenchless Technology Methods

Utility Tunneling Method

- Utility Tunneling
 - Performed in two steps
 - Excavation & Installation of Primary Support
 - Installation of Secondary Support/Liner System
 - Product pipe sizes 1,000 mm & larger
 - Limitations on length & size based on logistical considerations & safety

Utility Tunneling Method

Characteristic of Utility Tunneling

Method	Diameter Range (mm)	Typical Installation (m)	Pipe Materials	Typical Applications	Accuracy (+ or -)
Utility Tunneling	1,000 mm & larger	500	RCP, GRP, Steel	Pressure & Gravity Pipelines	~25 mm

DEPARTMENT OF

Typical Components of Utility Tunneling Method

DEPARTMENT OF

Utility Tunneling Method

Utility Tunneling Method

Possible Liners for Utility Tunneling

Wood Lagging

Tunnel Liner Plates

Utility Tunneling Method

CUIRE

Utility Tunneling Method

Trenchless Technology Methods

Pipe Jacking Method

- Pipe Jacking
 - Similar to Utility Tunneling, except it combines the excavation & pipe installation into one step
 - Product pipe sizes 1,000 mm & larger
 - Limitations on length & size based on logistical considerations & safety

Pipe Jacking Method

Characteristic of Pipe Jacking								
Method	Diameter Range (mm)	Typical Installation (m)	Pipe Materials	Typical Applications	Accuracy (+ or -)			
Pipe Jacking	1,000 mm & larger	500	RCP, GRP, Steel	Pressure & Gravity Pipelines	~25 mm			

DEPARTMENT OF

Typical Components of a Pipe Jacking Operation

DEPARTMENT OF CIVIL ENGINEERING

Pipe Jacking Method

- Pipe inserted &
 advanced into soil by
 rams from jacking
 shaft as soil is
 excavated ahead of
 leading pipe joint
- New pipes added as required until lead pipe joint reaches come out shaft

Pipe Jacking Equipment

Pipe jacking in progress inside the launch shaft

Arrival of the tunneling machine at the reception shaft

Pipe Jacking Equipment

Laser Guidance System for Pipe Jacking

Intermediate Jacking Stations

Source: Akkerman, Inc.

DEPARTMENT OF CIVIL ENGINEERING

TEXAS
ARLINGTON

DEPARTMENT OF CIVIL ENGINEERING

CUIRE

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

Trenchless Technology Methods

 Process of simultaneously jacking casing through the earth while removing the spoil inside the encasement by means of a rotating flight auger

- Horizontal Auger Boring
 - Performed in two steps:
 - Excavation & installation of the casing pipe
 - Installation of carrier pipe & filling annular space with grout
 - Crossing technique
 - Available with
 - Dynamic grade control
 - Dynamic line & grade control

Characteristic of Horizontal Auger Boring

Method	Diameter Range (mm)	Maximum Installation (m)	Pipe Materials	Typical Applications	Accuracy (+ or -)
Auger Boring	100-1,500	200	Steel	Road Crossings	1% of bore length
Auger Boring w/grade control	100-1,500	200	Steel	Road Crossings	300 mm
Auger Boring w/line & grade control	100-1,500	200	Steel	Road Crossings	300 mm

CIVIL ENGINEERING

Track Type Auger Boring Machine

DEPARTMENT OF

Major Components

- Track System
- Machine
- Casing Pipe
- Cutting Head
- Augers

UNIVERSITY OF

TEXAS

ARLINGTON

ARLINGTON

Trenchless Technology Methods

- Horizontal Directional Drilling (HDD)
 - Performed in two (or more) steps
 - Drilling of pilot hole using a steerable drill head & guidance system
 - Backreaming to increase pilot hole diameter & pullback of product pipe
 - Product pipe sizes up to about 1,500 mm
 - Typically used for crossings

Horizontal Directional Drilling

- Usually performed in two (or more) steps:
 - Drilling of pilot hole using a steerable drill head & locator system
 - Backreaming to increase pilot hole diameter & pullback of product pipe
 - Product pipe sizes up to about 1,500 mm
 - Typically used for road and river crossings

Characteristic of Horizontal Directional Drilling

Method	Diameter Range (mm)	Maximum Installation (m)	Pipe Materials	Typical Applications	Accuracy (+ or -)
Mini-HDD	100 – 300	< 200	PE, Steel, PVC,	Pressure Pipe & Conduits	Varies
Midi-HDD	300 – 600	200– 600	PE, Steel, DIP	Pressure Pipe	Varies
Maxi-HDD	6001,500	600 – 2,000	PE, Steel	Pressure Pipe	Varies

CIVIL ENGINEERING

ARLINGTON

DEPAR SOURCE: Mair & CIVIL ENGINEERING

CIVIL ENGINEERING Associates

CIVIL ENGINEERING Associates

Specifications – Material

Specifications – Grade

Steel

Grade B

Grade X-?

HDPE

• PE 3408

• PE 4710

PVC

• C-900 or C-905

ASTM

Ductile Iron

- American Flex-Ring
- US Pipe TR Flex

Pipe Comparison

Pipe		
Steel	✓ Tensile Strength✓ Diameter Range	✓ Corrosion Protection
HDPE	✓ Corrosion Protection✓ Very Flexible	✓ Tensile Strength✓ Diameter Range
Ductile Iron	✓ Familiarity✓ Availability	✓ Tensile Strength✓ Diameter Range
Fusible PVC	✓ Corrosion Protection✓ Consistent Material✓ Tensile Strength	✓ Limited Flexibility v. HDPE✓ Diameter Range

Profile Geometry

Geometry – Angles

Entry Angle

Optimum Range – 6° to 18°

Exit Angle

Optimum Range – 6° to 14°

Low Angles

- Easy Access
- Shallow Cover
- Lower Bending Stress

DEPARTMENT OF

High Angles

- Challenging
- Increased Equipment Requirements
 - Higher Bending Stress

Geometry – Drill Depth

Shallow Reduced Cover Depth Increased Frac-out Risk Reduced External **Forces** Ease of Drilling

DEPARTMENT OF

Deep **Increased Cover Depth** Reduced Frac-out Risk **Increased External Forces** High Annular Pressure

Geometry – Elevation Difference

Geometry – Cover Depth

- Minimum 20' 25' for Soils
- Can be less for Rock
- o 5' is not PRACTICAL !!!

DEPARTMENT OF

CIVIL ENGINEERING

Geometry – No. of Horizontal Curves

 Straight Profile No Steering Issues Horizontal Radius Consideration Possibility of a Compound Curve Might Complicate the Steering Possibility of a Compound Curve Unusual and Should be Avoided Complicated Steering

Geometry – No. of Horizontal Curves

Geometry – No. of Vertical Curves

Geometry –No. of Vertical Curves

DEPARTMENT OF

CIVIL ENGINEERING

Grade & Alignment Tolerances

Limited Margin for Errors

Buoyancy

- Buoyant Force on Pipe
 - a. Pipe Weight (Upwards or Downwards)
 - b. Ballast Weight (Downwards)
 - c. Buoyant Force (Upwards)

DEPARTMENT OF

Net Buoyant Force = c - (a + b)
 Can be Upwards or Downwards

Buoyancy

• 16" Dia. Steel Pipe, API 5L X42, 0.50" thick 2,400' Long

Parameters	Pulled back Empty	Pulled back Filled
Weight of Empty Pipe (↓)	62.64 lb./ft.	62.64 lb./ft.
Buoyant Force on Pipe (₁)	99.22 lb./ft.	99.22 lb./ft.
Weight of Water Filled Pipe (↓)	141.79 lb./ft.	141.79 lb./ft.
Net Buoyant Force on Pipe	36.58 lb./ft. (↑)	- 42.57 lb./ft. (↓)
Pull Load on Pipe	106,479 lb.	126,103 lb.

Buoyancy

External Pressure

 Condition 1: Borehole is Stable

> Pressure due to Drilling Fluid

Internal Pressure Net External Pressure

 Condition 2: Borehole is Deformed or Collapsed

Earth Pressur Pressur e due to Drilling Fluid

Pressur e due to Ground Water

Internal Pressur Net External Pressur e

Steering with Walkover System

Incomplete Information

DEPARTMENT OF

Provides Relative Depth

Stake Out for Actual **Profile**

Trenchless Technology Methods

What is Microtunneling?

- Tunneling horizontal earth boring
- Laser Guided line & grade
- Pipe Jacked
- Continuously Supported
- Suited for Gravity Sewer Line
- No Size Limitations for North American Definition not "micro"

Microtunneling Method

- Microtunneling
 - Also known as remote-controlled pipe jacking
 - Product pipe sizes 300 mm & larger
 - Uses automation for processes performed by workers within the tunnel on pipe jacking
 - Remote controlled MTBM
 - Remote controlled excavation & spoil removal
 - Remote controlled guidance system

Microtunneling Method

Characteristic of Microtunneling

Method	Diameter Range (mm)	Typical Installation (m)	Pipe Materials	Typical Applications	Accuracy (+ or -)
Microtunneling	> 300	500	RCP, GRP, VCP, Steel, PCP	Gravity Pipelines	~ 25 mm

Microtunneling

Microtunnel Boring Machine (MTBM)

Microtunneling Method

- Guidance systems based on a laser set in jacking shaft
- Types of guidance systems

DEPARTMENT OF

CIVIL ENGINEERING

- Passive
- Active

Trenchless Technology Methods

Pilot Tube Method

- Pilot Tube Microtunneling
 - PTMT
- Guided Boring Method
 - GBM
- Guided Auger Boring
 - -GAB

Trenchless Technology Methods

- Pilot Tube Microtunneling
 - Alternative to conventional microtunneling
 - Combines the features:
 - Accuracy of microtunneling
 - Steering mechanism of HDD
 - Spoil removal system of auger boring
 - Typically used in soft soils at relatively shallow depths for smaller diameter water lines & gravity sewers

Trenchless Technology Methods

Characteristic of Pilot Tube Microtunneling

Method	Diameter Range (mm)	Maximum Installation (meters)	Pipe Materials	Typical Applications	Accuracy (+ or -)
Pilot Tube Microtunneling	150 – 300	100	RCP, GRP, VCP, Steel, PCP	Smaller diameter gravity pipes	~25 mm

CIVIL ENGINEERING

Shaft Lining

CIVIL ENGINEERING

TEXAS ARLINGTON

Shaft Sizes

 Working space or foot print depends on jacking frame, pipe OD and pipe length.

Latching Frame 100 Ton Machines

- Capable of 11" thru 30" O.D. pipe in an 8" shaft.
- One meter pipe lengths

Large Diameter PTMT

- Capable of 11" thru 48" O.D. pipe in a 12" shaft.
- Can handle up to 2 meter lengths.
- "Extension Cans" can be added to jack longer length pipes. However, longer shafts would be required.

First Step in a 3-step PTMT

ARLINGTON

Guidance System

 Video camera transmits the target image to the PC display

Guidance System

 Consists of a LED illuminated target located in the steering head.

Installing the Pilot Tube

 Operator is looking at the digital display on the PC to maintain line and grade on the pilot tube.

CIVIL ENGINEERING

Pilot Tubes

Pilot Tube

Double Wall Pilot Tube

Pilot Tube Steering

Bullet - Very hard - high blow count soils

30° - For medium density soils

ARLINGTON

Changing Steering Heads

Second Step in a 3-step PTMT

Reaming Head Configurations

Reaming Head Lubrication Port

Lubrication Line To Reaming Head

Final Step in a 3-step PTMT

3rd Step-Installation of Product Pipe

DEPARTMENT OF

Spoil Removal

SAVINGS USING PILOT TUBE

MICROTUNNELING AT CAPE GIRARDEAU, MO

PROJECTS	EN	IG EST. \$	ND LOW BID	PTMT BID	\$ SAVED	%SAVED
Walnut/Henderson 12/95 4000 ft Sanitary (8" to 12") 230 ft Storm (12")	\$	837,992	\$ 598,646	\$ 556,832	\$ 41,814	7.0%
College/Henderson S. 1/96 15,000 ft Sanitary (8" to 15") 300 ft Storm (12" to 18")	\$	3,207,719	\$ 2,971,450	\$ 2,764,264	\$ 207,186	7.0%
Fort D 6/97 9,200 ft Sanitary (8" to 15") 2,100 ft Storm (12" to 24")	\$	2,450,000	\$ 2,931,523	\$ 2,187,000	\$ 744,523	25.4%
College/Henderson N. 10/97 15,900 ft Sanitary (8" to 12") 2,000 ft Storm (12" to 18")	\$	5,000,000	None	\$ 4,698,000	\$ 302,000	6.0%
Main CSO 8/ 98 50% Tunneled I,800 ft Sanitary (8" to 18") 9,900 ft Storm (12" to 42")	\$	3,870,800	\$ 4,725,000	\$ 3,890,000	\$ 835,000	21.6%

Total Savings Compared to Open Cut = \$ 2,130,523 15.1%

Information per Mark Lester, PE, City of Cape Girardeau, Missouri

Trenchless Technology Methods

Pipe Ramming Method

Pipe Ramming

ARLINGTON

- Installed in two steps:
 - Installation of the casing pipe by using an air hammer from a drive pit
 - Use closed-end casing (< 203 mm diameter)
 - Use open-end casing for > 203 mm, clean spoil from casing after drive completed
 - Installation of carrier pipe & filling annular space with grout
- Best suited for road crossings

Pipe Ramming Projects ASCE Manuals and Re on Engineering Practi

ASCE Manuals and Reports on Engineering Practice No. 115

Pipe Ramming Method

Characteristic of Pipe Ramming

Method	Diameter Range (mm)	Typical Installation (m)	Pipe Materials	Typical Applications	Accuracy (+ or -)
Pipe Ramming	< 1,500	100	Steel	Road Crossings	Depends on setup

DEPARTMENT OF

THE PROCESS: Typical Pipe Ramming Configuration

CHALLENGING **ADVANCED** ROUTINE 12" Thru 36" 36" Thru 80" 80" Thru 144"

Source: TT Technologies

Pipe Ramming Method

TEXAS CIVIL ENGINEERING

BASICS

VERTICAL RAMMING

- Ideal for Difficult Soil Conditions
- "Swallow Up" Large Obstructions
- Access Areas Where Larger Equipment Can't
- "Rat-Hole" Casings for Oil Field Applications

Conductor Barrel Step 1-Job Site

Conductor Barrel Step 2-Job Site Drilling starts in preferable soil conditions

REPEAT

Product Pipe Removal/Bore Salvage-Job Site

Pullback Assist-Job Site

Pipe Ram Rescue-Job Site

TRENCHLESS TECHNOLOGY APPLICATIONS FOR CULVERT

Mohammad Najafi, PHNSTALLGATH QUISPh.D., P.E.

najafi@uta.edu

Saeed Rahjoo, M.S.

saeed.rahjoo@mavs.uta.edu

UT Arlington/CUIRE

Gus.Khankarli@txdot.gov

Richard Williammee, P.E.

rwillia@dot.state.tx.us

Texas Department of Transportation (TxDOT)

Outline

- Introduction
- Ringgold project
- Trenchless new installation methods
- Selecting construction alternatives
- Influencing factors
- Discussion
- Results
- Conclusions and recommendations

Introduction to Trenchless Technology

ARLINGTON

Example: Ringgold Project

Ringgold Project

Number of Culverts	3 (each)
Diameter of Culverts	36 (in.)
Length	110 (ft)
Slope	-0.28%
Proposed Pipe Spacing	18 (in.)
Top of the Pipe from Surface	2 (ft)

(Modified from Google Maps)

Classification of TCMs for New Installations

Selecting Construction Alternatives

- Horizontal Auger Boring (HAB)
- Pipe Jacking (PJ)
- Microtunneling (MT)
- Pipe Ramming (PR)
- Pilot Tube Microtunneling (PTMT)

Horizontal Auger Boring

(Najafi and Gokhale, 2005)

GINEER (Akkermann Inc. ,2012)

ARLINGTON

Microtunneling

- 1. Control and steering desk
- 2. Crane
- 3. Jacking pipes
- 4. Separation plant
- 5. Mixing plant
- 6. Supply pump
- 7. Shield machine
- Intermediate jacking station
- 9. Main jacking station
- 10. Abutment (thrust block)

Pipe Ramming

Pilot-Tube Microtunneling

1st phase: pilot boring by means of soil displacement

1st phase: pilot boring by means of soil removal

2nd phase: reaming boring by means of soil removal and jacking of the temporary pipes

2nd phase: reaming boring and jacking of the product pipes

3rd phase:
Pushing-in the
product pipes with
simultaneous
pushing-out of the
temporary pipes

Assessment Criteria

- Soil Conditions
- Required Work Space
- Drive Length
- Depth of Installation
- Diameter of Pipe
- Type of Pipe
- Construction Productivity
- Costs

Soil Conditions

Soil Type	Coh	esive Soils	s(Clay)	Co	hesionless (Sand/Silt)		High		Full- Face Rock	
N Value (Standard Penetration Value as per ASTM D-1452)	N<5 (soft)	N=5-15 (firm)	N>15 (stiff- hard)	N<10 (loose)	N=10-30 (medium)	N>30 (dense)	Ground Water	Boulders		
0.61	Horizontal Earth Boring (HEB)									
Horizontal Auger Boring (HAB)	М	Υ	Υ	М	Y	Υ	N	≤ 33%D¹	≤ 12ksi	
Microtunneling (MT)	Υ	Y	Y	Y	Y	Y	Y	≤ 33%D¹	≤ 30ksi	
Pilot Tube Microtunneling (PTMT)	М	Y	Υ	М	Y	Υ	M	≤ 33%D¹	≤ 12ksi	
Pipe Ramming (PR)	Υ	Υ	Υ	Υ	M	М	М	≤90% D¹	N	
	Pipe Jacking (PJ)									
W/ TBM	М	Υ	Υ	M	Υ	Υ	М	M	≤ 30ksi	
W/ Hand Mining (HM)	N	Υ	Υ	М	Υ	Υ	N	≤ 95% D¹	Υ	

Y: Applicable

N: Not Applicable

M: Marginal

(This table is based on the assumption that the work is performed by experienced operators using proper equipment)

¹ Size of largest boulder versus minimum casing diameter (D)

Site Soil Conditions

Soil Donth (ft) Field Moisture	Field Moisture	Soil Gradation,%			Atterberg Limits,%		USCS Classification		-11	
Soil Depth (ft) Content, %		Gravel	Sand	Silt	Clay	Liquid Limit	Plastic Limit	Group Name	Group Symbol	pH
0.5-4.0	4.2	0	53	47	0	Non Plantin		Silty Sand	SM	8.9
2.5-4.0	4.2	0	33	47	0	Non Plastic		Silty Saliu	SIVI	0.9
5.0-6.5	7.4	0	43	56	2	Non Plastic		Sand Silt	ML	8.9
18.5-20.0	16.0	0	95	5	0	Non	Plastic	Poorly Graded Sand	Sp	9.6

*Based on the site soil conditions, there is no limitations to use any of the above methods

Required Work Space

Method	Required Work Space (ft)	Description
HAB	15 ft wide and 35 ft long	Typically, casing segments are 10-ft, 20-ft, or 40-ft in length.
PJ	15 ft wide and 35 ft long	The drive shaft size, can range from 10 to 15 ft by 17 to 40 ft.
MT	15 ft wide and 35 ft long	The drive shaft size, can range from 10-ft by 3-ft to 50- ft by 100-ft.
PR	8 ft wide and 40 ft long	The working space at the drive pit typically is 6- to 12-ft in width by 33- to 66-ft in length.
PTMT	8 ft wide and 15 ft long	For smaller pipe sections the workspace can be an 8-ft diameter shaft.

*No space limitation exists, as the road right-of-way provides adequate space

Drive Length

Methods	HAB	PJ	MT	PR	PTMT
Length (ft)	100-600	500-1,500	500-1,500	50-400	50-300

*The required length is approximately 110 ft, which presents no limitations to any of above methods.

Depth of Installation

Pipe Diameters (in.)	Soil Conditio ns	PJ/UT	HAB (ft)	HDD (ft)	MT	РТМТ	PR (ft)
Small (<12)	Clayey Silty Sandy Gravely		4 4 6 6	4	6 ft of	4 ft of	2
Medium (12~24)	Clayey Silty Sandy Gravely	6 ft of cover or 3 times outside diameter whichever is more	6 8 12 20	8	cover or 3 times outside diameter whichever	cover or 3 times outside diameter whichever	3
Large (>24)	Clayey Silty Sandy Gravely	is more	10 14 20 25	25	is more	is more	4

*Due to shallow depth, open face methods cannot be used in this project,

Diameter of Pipe

Methods	HAB	PJ	МТ	PR	PTMT
Diameter (in.)	4-60	42-Up	12-136	4-120	6-36

^{*}There is no diameter limitation to use any of these alternative construction methods

Type of Pipe

- Steel pipe (SP)
- Reinforced concrete pipe (RCP)
- Vitrified clay pipe (VCP)
- Ductile iron pipe (DIP)
- Glassfiber reinforced polyester

*For Ringgold project only reinforced concrete pipe (RCP)can be used.

Thus, HAB and PR cannot be selected.

Construction Productivity

100	tho d	Productivity (ft/8-hour shift)	Description
HA	AB	100	4 person crew, 3 to 4 hours to set up the auger boring equipment
Р	ľ	40	Productivity ranges 33 ft to 60 ft per 8-hour shift with a four or five person crew
M	ſΤ	40	A crew of four to eight can obtain a production rate of 30 ft to 60 ft per 8-hour shift
Р	PR 160		2 -3 person crew, the typical rate of penetration ranges from 2 in./min to 10 in/min
РТ	МТ	30	4 person crew can obtain a production rate of 25 ft to 45 ft per 8-hour shift

*It is expected that a productivity of about 30 ft per 8-hour shift would be acceptable to TxDOT road work schedule, so all the above methods are feasible

Costs

Method s	HAB	PR	PJ	PTMT	MT
Cost (\$)	390	450	650	750	1,150

*According to TxDOT, the only method exceeding the budget is MT,

IVERSITY OF DEPARTMENT OF

Eaper 10#8-6-02 IVIL ENGINEERING

Method Selection Summary:

Methods	HAB	PR	МТ	PTMT	PJ
Criteria					
Soil Conditions	Y	Y	Υ	Y	Y
Required Working Space	Y	Y	Y	Y	Y
Depth of Installation	N	Y	Υ	Y	Υ
Drive Length	Υ	Υ	Υ	Y	Υ
Diameter of the pipe	Υ	Υ	Y	Y	M*
Types of pipe	N	N	Υ	Υ	Υ
Productivity	Υ	Υ	Υ	Υ	Υ
Cost Feasibility**	Υ	Y	N	Y	Υ
Feasible Method	N	N	N	Υ	M*

Y: Applicable N: Not Applicable M: Marginal

^{**} Within project budget.

^{*} For the short distance it is possible to use this method.

Conclusions and Recommendations

- Selecting correct construction methods for new stormwater culvert installations requires a thorough investigation of project specific conditions.
- Capabilities and limitations of each trenchless construction method must be evaluated against project surface and surface conditions.

Summary

- Selection of the best method is a function of many issues including:
 - Size (diameter)
 - Shape
 - Alignment
 - Environment (fluid & temperature)
 - Structural needs
 - Loads (overburden, hydrostatic, surface)
 - Flow capacity (hydraulics)
 - Others????

Summary

 Due to nature of trenchless technology projects, the Inspector and the Engineer must work with the contractor to understand the project's expectations and work through potential problems.

QUESTIONS

Dr. Mohammad Najafi, P.E., F. ASCE

Director of the Center for Underground Infrastructure Research & Education (CUIRE)

Phone: 817-272-0507

Email: najafi@uta.edu

www.cuire.org

DEPARTMENT OF

CIVIL ENGINEERING

